Turbulence on the surface of the sun
(Encyclopaedia Britannica).

CHAPTER 9

The influence of rotation,
stratification, and magnetic fields
on turbulence

9.1 The importance of body forces in
geophysics and astrophysics

By and large, engineers do not have to worry too much about the
influence of body forces on turbulence. Perhaps a little buoyancy
crops up from time to time, but that is about it. The primary concern
of the engineer is the influence of complex boundaries and the way in
which these generate and shape the turbulence. The physicist, on the
other hand, generally has to contend with flows in which body forces
are the dominant factor. Astrophysicists, for example, might be con-
cerned with the formation and evolution of stars, or perhaps with
violent activity on the surface of the sun (solar flares, sun spots,
coronal mass ejections, etc.). In either case turbulence plays a crucial
role, transferring heat from the interior of a star to its surface, and
triggering solar flares and coronal mass ejections. Moreover, this is a
special kind of turbulence, shaped and controlled by intense magnetic
fields. Geophysicists, on the other hand, might be interested in the
motion of the earth’s liquid core, and in particular, the manner in
which turbulence in the core stretches and twists the earth’s magnetic
field in a way which prevents it from being extinguished through the
natural forces of decay. Here the dominant forces acting on the tur-
bulence are the Coriolis and Lorentz forces, arising from the earth’s
rotation and the terrestrial magnetic field, respectively. Indeed, the
non-linear inertial force, u-Vu, which has been the obsession of
Chapters 1-8, is almost completely unimportant in geodynamo
theory! Large-scale atmospheric and oceanic flows are also heavily
influenced by body forces, in this case buoyancy and, at the very large
scales, the Coriolis force.

In view of the difficulty of making predictions about conventional
turbulence, it might be thought that the task of incorporating grav-
itational, Coriolis, and Lorentz forces into some coherent statistical
model is so overwhelming as to be quite impractical. In a sense this is
true. The equations of turbulence incorporating these forces are
extremely complex. Curiously though, there are aspects of these
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Influence of rotation, stratification, and magnetic fields

Figure 9.1 The type of large-scale eddies
found in: (a) strongly stratified turbulence,
(b) rapidly rotating fluid, and (¢} a conducting
fluid threaded by a magnetic field, B.
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complex flows, that are easier to understand than conventional tur-
bulence. The point is that buoyancy, Coriolis, and Lorentz forces all
tend to organize and shape the turbulence, promoting vortices of a
particular structure at the expense of other eddies. For example, it
turns out that turbulence in a strongly stratified medium is dominated
(at the large scales) by flat “pancake’ vortices (Figure 9.1(a)). A rapidly
rotating fluid, on the other hand, tends to extrude vortices along the
rotation axis forming columnar eddies (Plate 13; Figure 9.1(b)).
Finally, a magnetic field causes vortices to diffuse along the magnetic
field lines giving rise, once again, to columnar or sheet-like structures
(Figure 9.1(c)). So, while the governing equations for these flows are
messy and complex, the flows themselves tend to look more orga-
nized than conventional turbulence. The key to understanding tur-
bulence in the presence of a body force is to isolate the mechanism by
which that force organizes and shapes the motion. If this can be done,
a great deal of useful information can be extracted from the analysis.

We shall look at the influence of rotation, stratification, and mag-
netic fields in turn, taking rotation and stratification together as they
share many common characteristics. The discussion is brief, but the
interested reader will find a more comprehensive discussion in the
following texts and papers:

Rotational effects: Greenspan (1968), Cambon et al. (1997), and lida
and Nagano (1999).

Stratification: Panchev (1971), Monin and Yaglom (1971), Turner
(1973), and Riley and Lelong (2000).
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MHD turbulence: Moftatt (1978), Biskamp (1993), and Davidson
(2001).

9.2 The influence of rapid rotation and
stable stratification

We shall discuss the structure of turbulence in a rapidly rotating
system in Sections 9.2.4 and 9.2.5, and turbulence in a stratified fluid in
Section 9.2.6. First, however, we summarize some of the properties of
the Coriolis force. In particular, we shall see that it tends to promote a
form of internal wave motion, called an inertial wave. It is these waves
which so dramatically shape the turbulent eddies in a rapidly rotating
fluid. It turns out that inertial waves have a structure closely related to
that of internal gravity waves, and it is this similarity in wave structure
that underpins the close analogy between rotating and stratified
turbulence. So let us start with the Coriolis force.

9.2.1 The Coriolis force

A frame of reference, which rotates at a constant rate {2 relative to
an inertial frame is not inertial. The accelerations of a particle mea-
sured in the two frames are related by

(du/dt) = (da/dt),. + 20 x a+ @ x (& x x) (9.1)

inertial rot

where " indicates quantities measured in the rotating frame. The terms
2€) x a and 2 x (£} X X) are referred to as the Coriolis and centripetal
accelerations, respectively. Equation (9.1) arises from applying the
operator (d/db)ineraa = (d/dE) o + €2 X to the radius vector x, which
gives u=1u-+ £} x %. Differentdating once more gives (9.1). If we
multiply both sides of (9.1) by the mass of the particle, m, we have

m(du/dt) = m(du/dt)

inertial —

+ m[20) x u] + m[€} x (O x x)].

rot

Since the left-hand side of this equation is equal to F, the sum of the
forces acting on the particle, we can rewrite this as

m(di/dt) = F—m[2Q x a] — m[Q x (£ X x)]

rot

and we see that Newton's second law does not apply in the rotating
frame. But we can ‘fix’ things if we add to the real forces F, the
fictitious forces Feo,= —m[28) x @] and F.,= — m[{} x (£} X %)].
These are known as the Coriolis and centrifugal forces, respectively.

! For simplicity we shall take the two frames of reference to have a common origin
so that x =X. For a detailed discussion of rotating frames of reference, see, for example,
Symon {1960).
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Figure 9.2 The influence of the Coriolis
force on motion in the x—y plane.
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Note that the centrifugal force is irrotational and may be written as
1 ~A\2 .
VEm(L x %), that is,

VO x x)*] = (@ x x) - V(@ x x) + ( x x) X [V x (@ x x)]
=0 x (D xx)+2(2 xx)x Q=—OQ x (X xx).

This is important in the context of fluid mechanics since the cen-
trifugal force may be simply absorbed into the pressure term, —Vp, to
form a modified pressure gradient. In the absence of a free surface,
such forces produce no motion. So, introducing the modified pressure,
p=p —1p(Q x %)°, the Navier Stokes equation in a rotating frame
of reference becomes

J0/ot+a-Va=—V(p/p) + 20 x Q+ vV (9.2)

From now on we shall omit the " on @, on the understanding that u is
measured in the rotating frame, and the " on p, on the understanding
that p refers to the modified pressure. Note that, by necessity, the
fictitious Coriolis force 2u x €} cannot create or destroy energy, as
evidenced by the fact that (2u x ) -u=0. Also, the relative strength
of the non-linear inertial force, u - Vu, and the Coriolis force, 2u x {2,
is given by the so-called Rossby number, Ro =u/1Q, where ! is a typical
scale of the motion.

In the next few pages we shall omit the viscous term in (9.2) since
the effect of the Coriolis force does not depend on viscosity. Also, to
focus thoughts, we shall take £ to point in the z-direction and assume
that Ro is small, so that the fluid is primarily in a state of rigid body
rotation. Equation (9.2) becomes

?)—ltlzux Q—V(p/p). (93)

Note that the Coriolis force tends to deflect a fluid particle in a direc-
tion normal to its instantaneous velocity, as illustrated in Figure 9.2.
Thus, a fluid particle travelling radially outward experiences a force
which tends to induce rotation in a sense opposite to that of €2, so that
its angular velocity measured in an inertial frame is reduced. Con-
versely, a particle moving radially inward will start to rotate (in the
non-inertial frame) in the same sense as ). We might anticipate that,
when viewed in an inertial frame, this curious behaviour is a direct
consequence of the law of conservation of angular momentum and
this is indeed more or less true. (Note, however, that individual fluid
particles can exchange angular momentum via the pressure force and
so this interpretation is a little simplistic. See Example 9.1.)

We shall see shortly that the Coriolis force has an extraordinary
effect on a rotating fluid. In particular, it endows the fluid with a kind
of elasticity, which allows it to propagate internal waves, called
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inertial waves.” We can gain some insight into the origin of this phe-
nomenon if we restrict ourselves to axisymmetric motion; that is, in
our rotating frame of reference, we take u to be of the form
u(r, z) = (u,, up, u,) in (r,6,z) coordinates. Now suppose that, in our
rotating frame, we have poloidal motion in the r-z plane, as shown in
Figure 9.3(a). Initially the fluid has no relative rotation, ug — 0. Fluid at
A is swept inward to A’ while fluid at B is carried outward to B. This
radial movement gives rise to a Coriolis force, — 2u, €y, which
induces positive relative rotation at A’, uyp > 0, and negative relative
rotation at B’ (Figure 9.3(b)). Note that the direction of this induced
rotation is such as to conserve angular momentum in an inertial frame
of reference. The induced swirl itself now gives rise to a Coriolis force,
2ugfdé,. This force opposes the original motion, tending to move the
fluid at A’ radially outward and the fluid at B/ inward (Figure 9.3(c)).
The whole process now begins in reverse and since energy is con-
served in an inviscid fluid, we might anticipate that oscillations are set
up, in which fluid particles oscillate about their equilibrium radii.
These oscillations, which are the hallmark of a rapidly rotating fluid,
are a manifestation of inertial wave propagation.

We shall return to inertial waves in Section 9.2.3, where we shall
analyse their properties in detail. In the meantime, we consider
another, closely related, consequence of rigid body rotation: the ten-
dency for the Coriolis force to produce two-dimensional motion.

Example 9.1 Angular momentum conservation in inertial and

non-inertial frames

Let us temporarily return to the use of the ~ to indicate variables in the
rotating frame. Show that (9.3) yields

(D(% x @)/Dr).,. — 2% x (i x Q)+ V x [(3/p)&]. (9.4)

The second term on the right-hand side integrates to zero for a
localized disturbance, but the first need not. Evidently, angular
momentum, as measured in the rotating frame, is not conserved. The

first term on the right may be transformed using the identity:
{2Zx x [vx K[}, = {(xxv) x K} + V- xx (xxK)v] (9.5

where v is any solenoidal vector field and K is a constant vector. By
equating @ to v and £ to K, show that (9.4) can be rearranged to give

(D/Dt)_ [x x (0 + (£ x %))] + € x [x x (0 + ( x x))]

=V x[(p/p)]. (9.6)

2 A partcularly simple and beautiful explanation of inertial waves, which is different
from ours and relies on an analogy between rotation and density stratification, is given
by Rayleigh (1916).
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Figure 9.3 Sequence of events that leads to
inertial waves through the action of the

Coriolis force.
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Since u=1u+ £} x %, this simplifies to
[(D/Dt) o + @ x](x X w) =V x [(p/p)X]. (9.7)

Finally show that this reduces to the inertial frame equation:
[(D/ D)yl (x X w) = V< [(p/ p)x] (9.8)

which, unlike (9.4), does conserve angular momentum. (The term on
the right integrates to zero for a localized disturbance.)

9.2.2 The Taylor—Proudman theorem

In a rotating frame of reference, our inviscid equation of motion is,
Du .

We are particularly interested in cases where the departures from
rigid-body rotation are slight, so the Rossby number, #/1€), is small. In
such cases the inertial term u- Vu may be neglected by comparison
with the Coriolis force and we have

ou_

En 2u x & —Vip/p). (9.10)

We may eliminate pressure by taking the curl of (9.10). This provides
us with a linearized vorticity equation:

On

— =2(£) - V)u. 9.11

20V an
If the motion is steady, or quasi-steady, we may neglect dm/dt, which
yields,

(- V)u=o. (9.12)

We have arrived at the Taylor-Proudman theorem. In cases where
# << Ql and Au/dt is small, the motion must be purely two dimensional,



